このスレッドは管理者によりロックされています。記事の閲覧のみとなります。
ホームに戻る > スレッド一覧 > 記事閲覧
名古屋市港区の中学校(中間テスト・期末テスト:数学、英語、理科、国語、社会) 名古屋市港区 掲示板
日時: 2012/09/16 17:57
名前: 名古屋市港区の中学校 掲示板

(#) 「中学生の勉強法とテスト対策」
http://makingsense.greater.jp/mag/index.html

<名古屋市港区の公立中学校 一覧>
名古屋市立港南中学校
名古屋市立港北中学校
名古屋市立東港中学校
名古屋市立南陽中学校
名古屋市立宝神中学校
名古屋市立当知中学校
名古屋市立港明中学校
名古屋市立南陽東中学校


------------------------------

<すぐ解けたら賢い問題>
(問題)
100km離れた向かい合った電車がそれぞれ時速50kmで接近しています。そして、ハエが時速70kmで両方の電車を行ったり来たりします。電車に出会うとUターンしてもう一方の電車に出会うとまたUターンというふうに。
双方の電車がすれ違うまでに、ハエはどれくらいの距離を飛ぶことになるでしょうか?
ただし、ハエがUターンする時にかかる時間はゼロとして考えてください。


答えと解説は、一番下で。


------------------------------

<高校受験対策>

高校受験は、多くの中学3年生にとっては、初めて臨む選抜試験だと思います。
公立高校を受験する場合、数万人の受験生が同じ入試問題に取り組みます。
選抜試験というのは、ふるいにかける試験でもありますから、限られた試験時間内で、簡単な問題から難問までをバランスよくちりばめています。それによって、得点分布が偏らないように作成されます。
したがって、勉強が苦手な生徒さんは、受験勉強中に難問に取り組んで時間を費やすのは非効率です。過去の入試問題集を見て、基本問題だけを確実に正答できるようにしておくことが大事です。
優秀な生徒さんは、上述の通り、難問も存在しますから、簡単に満点をとることはできません。(簡単に満点がとれるなら、難関公立高校では、得点分布が上位に偏ってしまいますから。) したがって、解けない問題があったとしても、気持ちを切り替えて、次の教科の試験に臨むようにしましょう。

http://makingsense.greater.jp/mag/index.html



------------------------------

(#)中学1年生
http://www.mag2.com/sample/0001568190.html

<数学>
「式の計算」と「方程式を解く」ことの違いについては、
下記サイトにまとめたので御覧ください。重要です。
http://bit.ly/UzoTip



<国語>
次の(a),(b)のカッコ内をそれぞれ漢字で書きなさい。

問題1 (いぎ)
(a) (いぎ)を申し立てる。
(b) 生きる(いぎ)を見いだす。


問題2 (いし)
(a) 彼は(いし)が弱い。
(b) 親子の間で(いし)の疎通ができている。


<答え>

問題1の答え
(a) (異議)を申し立てる。
(b) 生きる(意義)を見いだす。
(解説) 異議は「他と違った議論。異論。」の意味で、意義は「意味。価値。」の意味。


問題2の答え
(a) 彼は(意志)が弱い。
(b) 親子の間で(意思)の疎通ができている。
意志は「何かをしようとする気持ち」の意味で、意思は「考え。思い。」の意味。


------------------------------

(#)中学2年生
http://www.mag2.com/m/0001568210.html

<数学の問題>
濃度10%の食塩水xグラムと濃度20%の食塩水yグラムを混合して、
 16%の食塩水を1000グラムつくるつもりでしたが、
 10%の食塩水と間違えて水を入れてしまいました。
 これについて次の問いに答えなさい。
 (1)10%、20%の食塩水をそれぞれ何グラム混ぜるつもりだったか。
 (2)水を入れたため、何%の食塩水になったか。

(答え)
 (1) 10%の食塩水を400グラム、20%の食塩水を600グラム
 (2) 12%

(解説)は下記URL
http://bit.ly/RxmeWv





------------------------------

(#)中学3年生
http://www.mag2.com/sample/0001568211.html

<重要な英語表現>
次の日本語文を英語で表現しなさい。

(1)何かわかったら電話下さい。

(2)日本の歴史のことを調べに図書館へ行った。

(3)(あなたが)最近どうしてるかなと思い、(私は)連絡しました。

(4)お食事会に招待して頂きありがとうございます。

(5)それは夢のように思われます。

(6)それは面白そうですね。

(7)まったく賛成です。

(8)だれでも間違いを犯すことがある。

(9)もし間違ったら訂正してください。

(10)我々は経験から多くを学びます。

(11) 君達は失敗から学ばなければならない。




(答え例)


(1) Give me a ring if you find out anything.

(2) I went to the library to find out about the Japanese history.
 「find out」は、「見つけ出す。知る。考え出す。」

(3) I'm just wondering how you are doing lately.
 (ふと気になって、久しぶりに電話やメールする時に使える表現ですね。)

(4) Thank you for inviting me for a dinner.
 (決まり文句です。)

(5)It sounds like a dream.
(参考) It sounds like an excuse. 「それは言い訳のように聞こえます。」

(6)That sounds like fun.
 (決まり文句です。)

(7) I quite agree.
 I agree. をもっと強調したい時に、quiteを使えます。
quiet「静かな」と、quiteを混同しないように!

(8) Anybody can make a mistake.

(9) Please correct me if I make a mistake.
英語を話す外国人と英語で会話する時に、あらかじめ言っておくといいかも。

(10) We learn much from experience.
(参考) We learn from ancient people. 「我々は先人から学ぶ」

(11)  You must learn from mistakes.
 あるいは、 You have to learn from mistakes.




------------------------------

(#)「速く走る本」(アマゾンのサイト)
http://amzn.to/RQhkQo

2学期は運動会(体育祭)があります。
走りの速い生徒はヒーローになれたりします。

運動が得意な生徒も、苦手な生徒も、運動の理論を勉強して秘密練習してみてはいかがですか?

(#)「体育の基本 走る・泳ぐ・投げる・回る・跳ぶ」(アマゾンのサイト)
http://amzn.to/RGWXJF



------------------------------

(*)「家庭教師 紹介サークル」
http://goo.gl/RcvLl
家庭教師の紹介(派遣)をしてほしい方や、家庭教師(無料登録)をしたい大学生のためのページ(個人契約、直接契約)です。紹介ページリストの中から、お気に入りの家庭教師(大学生、男性、女性)を自由に選ぶことができます。
学校の補習(予習、復習;算数、数学、英語、理科、国語、社会)、定期テスト対策(中間テスト・期末テスト)や、受験対策(中学受験、高校受験、大学受験)、夏休み、冬休み、春休み指導など、お子様の御希望に合わせてお選びください。
特に、受験生の場合、志望校が決まっているようでしたら、その学校の出身者(あるいは在校者)の家庭教師なら、受験指導の他に、偏差値や入試問題の特徴や体験談や勉強法のアドバイス、さらには、校風や評判や学費(授業料)といった情報も教えてもらえるかもしれません。



┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘
(#)無料メールマガジン 「中学生の勉強法と高校受験対策」
http://www.mag2.com/m/0001567251.html
<概要>
中学生の勉強(数学、英語、理科、国語、社会)のコツや、
中間テスト・期末テストの対策や、高校入試問題を通して
高校受験対策をする無料メールマガジンです。
将来の進路に役立つ話題や、おすすめの参考書も紹介します。
男子中学生も女子中学生も高校受験生も保護者様もぜひご覧ください。
サンプル誌は、こちら。
http://archive.mag2.com/0001567251/index.html
そのページで、メールアドレスを入力して登録していただけましたら、
最新号のメールマガジンをお届けいたします。(無料登録)
┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘┘



------------------------------

<すぐ解けたら賢い問題の解答と解説>


(問題)
100km離れた向かい合った電車がそれぞれ時速50kmで接近しています。そして、ハエが時速70kmで両方の電車を行ったり来たりします。電車に出会うとUターンしてもう一方の電車に出会うとまたUターンというふうに。
双方の電車がすれ違うまでに、ハエはどれくらいの距離を飛ぶことになるでしょうか?
ただし、ハエがUターンする時にかかる時間はゼロとして考えてください。



(答え) 70km


(解説)
ハエが行ったり来たり、、、一見、難しそうな問題に見えますが、単に、電車が出会うまでの時間から、ハエの飛ぶ距離を計算したらいいだけです。
電車は1時間で出会いますから、1時間に、ハエが飛び続ける距離は70kmになります。

以下は、中学では習わないので無視してもいいです。
ちなみに、無限級数で解くと、
最初に、ハエが電車に出会うまでに
70×100/(50+70)=175/3 km進みます。
このとき、電車間の距離は、100-100×100/(50+70)=50/3 kmです。
公比は、(50/3)/100=1/6
したがって、初項 175/3 、公比 1/6の無限等比級数
(175/3)/(1-1/6)=70kmとなります。

等比数列や無限級数については、下記サイトを参照してください。
http://bit.ly/RQ3eOZ

なお、講談社ブルーバックスのシリーズでは、論理パズルや数学パズルの書籍が充実していますので、数学好きな生徒や、得意になりたい生徒は勉強してみるといいでよう。
(#)講談社ブルーバックス(アマゾンのサイト)
http://amzn.to/RQbONG


------------------------------


(*)中学生の勉強法と高校受験 ツイッター
https://twitter.com/jukenbbs


------------------------------



<名古屋市港区の公立中学校 一覧>
名古屋市立港南中学校 名古屋市立港北中学校 名古屋市立東港中学校 名古屋市立南陽中学校 名古屋市立宝神中学校 名古屋市立当知中学校 名古屋市立港明中学校 名古屋市立南陽東中学校
メンテ

(全部表示中) もどる スレッド一覧